فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


نویسندگان: 

AHMADI P. | GHOLAMPOUR I. | TABANDEH M.

اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    50
  • شماره: 

    2
  • صفحات: 

    177-186
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    206
  • دانلود: 

    0
چکیده: 

Analyzing motion patterns in traffic videos can be exploited directly to generate highlevel descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this paper, a two-level Sparse Topical Coding (STC) topic model is proposed to analyze traffic surveillance video sequences which contain hierarchical patterns with complicated motions and co-occurrences. The first level STC model is applied to automatically cluster optical flow features into motion patterns. Then, the second level STC model is used to cluster motion patterns into traffic phases. Experiments on a real world traffic dataset demonstrate the effectiveness of the proposed method against conventional onelevel topic model based methods. The results show that our two-level STC can successfully discover not only the lower level activities but also the higher level traffic phases, which makes a more appropriate interpretation of traffic scenes. Furthermore, based on the two-level structure, either activity anomalies or traffic phase anomalies can be detected, which cannot be achieved by the one-level structure.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 206

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Nozaripour Ali | Soltanizadeh Hadi

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    2
  • شماره: 

    1
  • صفحات: 

    27-35
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    30
  • دانلود: 

    0
چکیده: 

Personal identification based on vein pattern is one of the latest biometric approaches that have attracted lots of attention. Besides, Convolutional Sparse Coding (CSC) is a popular model in the signal and image processing communities, resolving some limitations of the traditional patch-based Sparse representations. As most existing CSC algorithms are suited for image restoration, we present a novel discriminative model based on CSC for dorsal hand vein recognition in this paper. The proposed method, discriminative local block coordinate descent (D-LoBCoD), is based on extending the LoBCoD algorithm by incorporating the classification error into the objective function that considers the performance of a linear classifier and the representational power of the filters simultaneously. Thus, for training, in each iteration, after updating the Sparse coefficients and convolutional filters, we minimize the classification error by updating the classifier’s parameters according to the label information. Finally, after training, the label of the query image will be determined by the trained classifier. One thousand two hundred dorsal hand vein images taken from 100 individuals are used to verify the validity of the proposed methods. The experimental results show that our method outperforms other competing methods. Further, we demonstrate that our proposed method is less dependent on the number of training samples because of capturing more representative information from the corresponding images.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 30

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    50
  • شماره: 

    4 (پیاپی 94)
  • صفحات: 

    1683-1696
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    418
  • دانلود: 

    183
چکیده: 

به دلیل افزایش حجم تصاویر تولیدشده توسط دوربین ها و دستگاه های مختلف، پردازش تصویر در بسیاری از کاربردها ازجمله پزشکی، امنیتی و رانندگی اهمیت و جایگاه بالایی یافته است. بااین حال بیشتر مدل های ایجادشده در حوزه پردازش تصویر کارایی چندانی نداشته و میزان خطای آن ها در برخی کاربردها تاثیرگذار است. علت اصلی ناکامی بیشتر مدل های ساخته شده، اختلاف توزیع بین داده های آموزشی (دامنه منبع) و داده های تست (دامنه هدف) می باشد. درواقع، مدل ساخته شده، قابلیت تعمیم دهی به داده هایی با خصوصیات و توزیع های متفاوت از داده های آموزشی را ندارد، به همین دلیل در مواجهه با داده های جدید دچار افت شدیدی می شود. در این مقاله ما یک روش جدید با نام کدگذاری تنک و طبقه بندی انطباقی (SADA) پیشنهاد می دهیم که یک مدل پردازش تصویری ایجاد می کند که در مقابل تغییرات داده ای مقاوم می باشد. مدل پیشنهادی با ایجاد یک زیر فضای مشترک بین دامنه های منبع و هدف اختلاف توزیع آن ها را به حداقل رسانده و موجب بهبود کارایی می شود. همچنین SADA با انتخاب نمونه هایی از دامنه منبع که با دامنه هدف مرتبط می باشند اختلاف توزیع بین دامنه ها را کاهش می دهد. علاوه بر آن، SADA با تطبیق پارامترهای مدل ایجادشده، یک مدل تطبیق پذیر برای مواجهه با شیفت داده ها ایجاد می کند. نتایج به دست آمده از آزمایش های متنوع، نشان می دهد که روش پیشنهادی ما، برتری قابل ملاحظه ای نسبت به تمام روش های تطبیق دامنه جدید دارد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 418

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 183 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

MAVADATI S.

اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    31
  • شماره: 

    11 (TRANSACTIONS B: Applications)
  • صفحات: 

    1910-1917
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    209
  • دانلود: 

    0
چکیده: 

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this paper, the problem of rice categorization and quality detection using compressive sensing concepts is considered. This issue includes Sparse representation and dictionary learning techniques to achieve over-complete models and represent the structural content of rice variety. Also, dictionaries are learned in such a way to have the least coherence values to each other. The results of the proposed classifier based on the learned models are compared with the results obtained from the neural network and support vector machine classifiers. Simulation results show that the proposed method based on the combinational features is able to identify the type of rice grain and determine its quality with high accuracy rate.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 209

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1397
  • دوره: 

    8
  • شماره: 

    2
  • صفحات: 

    115-132
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    435
  • دانلود: 

    283
چکیده: 

در این تحقیق یک روش نوین جهت آشکارسازی ناهنجاری ها در تصاویر ابرطیفی بر پایه کدگذاری تنک و با استفاده از پنجره های متحرک محلی پیشنهاد شده است. مهمترین نقطه قوت این روش فراهم نمودن شرایط و امکان قضاوت بهتر در خصوص احتمال وقوع ناهنجاری در داده های ابرطیفی با بکارگیری روشی با قابلیت تجمیع و هم افزایی اطلاعات هر پیکسل تصویری طی عبور پنجره متحرک از آن می باشد. در این روش با عبور یک پنجره ی متحرک، هر پیکسل موقعیت های مکانی مختلفی را نسبت به همسایگان مکانی خود تجربه نموده و در هر یک از موقعیت های مذکور یک دیکشنری محلی که مبین داده های پس زمینه می باشد، بصورت بهینه با استفاده از الگوریتمK-SVD تشکیل شده و بازسازی داده های موجود به روش تخمین تنک در پنجره متحرک با بگارگیری الگوریتم SOMP صورت می پذیرد. بنابراین در هر موقعیت پنجره برای هر پیکسل خطای بازسازی با روش کدگذاری تنک مورد محاسبه قرار می گیرد. با توجه به استفاده از دیکشنری پس زمینه در بازسازی کلیه داده ها، هر گاه احتمال وقوع ناهنجاری در پیکسل مورد بررسی بیشتر باشد، مقدار خطای بازسازی آن نیز بزرگتر خواهد بود. لذا با بررسی این خطا در موقعیت های مختلف هر پیکسل نسبت به پنجره متحرک، می توان به مجموعه ای از خطاهای بازسازی برای آن پیکسل دست یافت که در نهایت واریانس آنها به عنوان معیار آشکارسازی ناهنجاری در نظر گرفته می شود. مقایسه نتایج آشکارسازی با روش پیشنهادی در این تحقیق با الگوریتم هایی مانند GRX، LRX، CRD وBJSR با بکارگیری چهار نوع داده ابرطیفی اعم از واقعی و شبیه سازی شده، حاکی از کارایی بهتر آشکارساز پیشنهادی به میزان متوسط حدود 9 درصد نسبت به آنها می باشد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 435

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 283 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    37
  • شماره: 

    3
  • صفحات: 

    767-790
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    82
  • دانلود: 

    8
چکیده: 

امروزه، گستردگی و تنوع اطلاعات متنی باعث پیچیدگی فرایند یافتن دانش و الگو های مورد نظر از میان آن ها شده است. یکی از گام های مؤثر برای کاهش این مشکل، خلاصه سازی است. در چند دهه گذشته مسئله خلاصه سازی با توجه به نمونه های گوناگون از جهات و ابعاد مختلف بررسی شده است. خلاصه سازی فرایندی هوشمند است که انجام آن حتی برای انسان ها ساده نیست و هر فردی با توجه به دیدگاهش می تواند نتیجه متفاوتی ارائه دهد. یک خلاصه مناسب باید دارای سه ویژگی پوشش، تُنُک بودن و تنوع باشد. بدین منظور در این پژوهش برای در نظر گرفتن این ویژگی ها یک روش بر مبنای کدگذاری تُنُک ارائه می شود. با به کارگیری این روش جملاتی به عنوان خلاصه نهایی انتخاب می شوند که حداقل خطا را در بازسازی جملات متن ورودی داشته باشند. سپس، با استفاده از روش های عصبی در بازنمایی معنایی کلمات و همچنین متون به بهبود روش پیشنهادی پرداخته می شود. برای ارزیابی روش پیشنهادی از مجموعه دادگان پاسخ استفاده شده و نشان داده می شود که روش پیشنهادی عملکرد بهتری نسبت به سایر پژوهش های انجام شده بر روی این دادگان در زبان فارسی دارد. مدل پیشنهادی توانسته است به میزان 10/02 درصد و 8/65 درصد و به ترتیب در معیار F روژ-1 و روژ-2 بهبود حاصل نماید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 82

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 8 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    36
  • شماره: 

    3 (پیاپی 105)
  • صفحات: 

    767-790
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    563
  • دانلود: 

    282
چکیده: 

امروزه گستردگی و تنوع اطلاعات متنی باعث پیچیدگی فرایند یافتن دانش و الگو های مورد نظر از میان آن ها گردیده است. یکی از گام های موثر برای کاهش این مشکل خلاصه سازی متون می باشد. در چند دهه گذشته، مسیله خلاصه سازی با توجه به نمونه های گوناگون از جهات و ابعاد مختلف بررسی شده است. خلاصه سازی فرآیندی هوشمند است که انجام آن حتی برای انسان ها ساده نمی باشد و هر فردی با توجه به دیدگاهش می تواند نتیجه متفاوتی ارایه دهد. یک خلاصه مناسب باید دارای سه ویژگی پوشش، تنک بودن و تنوع باشد. بدین منظور در این پژوهش برای در نظر گرفتن این ویژگی ها یک روش بر مبنای کدگذاری تنک ارایه می گردد. با استفاده از این روش جملاتی به عنوان خلاصه نهایی انتخاب می گردند که حداقل خطا را در بازسازی جملات متن ورودی داشته باشند. سپس با استفاده از روش های عصبی در بازنمایی معنایی کلمات و همچنین متون به بهبود روش پیشنهادی پرداخته می شود. برای ارزیابی روش پیشنهادی از مجموعه دادگان پاسخ استفاده شده است و نشان داده می شود که روش پیشنهادی عملکرد بهتری نسبت به سایر پژوهش های انجام شده بر روی این دادگان در زبان فارسی دارد. مدل پیشنهادی توانسته است به میزان 10. 02% و 8. 65% به ترتیب در معیار F روژ-1[1] و روژ-2[2] بهبود حاصل نماید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 563

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 282 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1399
  • دوره: 

    4
  • شماره: 

    1 (پیاپی 5)
  • صفحات: 

    47-57
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    215
  • دانلود: 

    90
چکیده: 

کد گذاری شبکه تنک به عنوان یک روش جهت کاهش پیچیدگی محاسباتی روش کد گذاری شبکه خطی تصادفی معرفی شد. در این روش برخلاف روش کد گذاری شبکه خطی تصادفی بیشتر ضرایب ماتریس کدگشایی صفر است. این تغییر باعث کاهش قابل توجه پیچیدگی محاسباتی الگوریتم های کدگشایی می شود. کدگشایی جزیی به معنای امکان کدگشایی بخشی از بسته های خام (پیش از دریافت بسته های مورد نیاز برای کدگشایی همه بسته های خام(تعریف می شود و یکی از قابلیت های روش کد گذاری شبکه تنک است. در این مطالعه با بهره بردن از قابلیت ذکر شده، با ارایه سه مدل مختلف روش کد گذاری تنک را به عنوان یک رویکرد برای کاهش تاخیر کدگشایی در نرم افزاری های بلادرنگ بررسی می کنیم. به طور دقیق تر ما ابتدا، با معرفی یک مدل مبتنی بر زنجیره ی مارکف، کد گذاری شبکه تنک را برای پیکربندی بدون یازخورد از لحاظ عملکرد های تعداد ارسال های مورد نیاز و میانگین تاخیر کدگشایی بسته برای یک نسل از بسته های خام ارزیابی می کنیم. سپس صحت مدل ارایه شده را با استفاده از شبیه سازی گسترده ارزیابی کر ده ونشان می د هیم مدل ارایه شده قادر به ارزیابی دقیق تعداد ارسال های مورد نیاز و تاخیر کدگشایی بسته برای یک نسل از بسته های خام است. نتایج همچنین صحت مدل در کانال خطا دار را هم ارزیابی می کند. در ادامه مدل مبتنی بر بازخورد را معرفی می کنیم و در بخش شبیه سازی نشان می دهیم این مدل قادر به ایجاد یک تعادل بهتر بین عملکرد تعداد ارسال و میانگین تاخیر کدگشایی بر بسته است. در آخر با تمرکز بر مسیله پیدا کردن درخت پوشای تصادفی یک مدل مبنی بر گراف برای تحلیل کدگذاری شبکه تنک ارایه می کنیم ونشان می دهیم اگرچه مدل معرفی شده فقط برای تنکی 2 معتبر است، اما ظرفیت توسعه برا تنکی های کمتر را نیز دارا است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 215

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 90 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    5
  • شماره: 

    1
  • صفحات: 

    16-24
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    339
  • دانلود: 

    0
چکیده: 

Sparse Coding is an unsupervised method which learns a set of over-complete bases to represent data such as image, video and etc. In the cases where we have some similar images from the different classes, using the Sparse Coding method the images may be classified into the same class and devalue classification performance. In this paper, we propose an Affine Graph Regularized Sparse Coding approach for resolving this problem. We apply the Sparse Coding and graph regularized Sparse Coding approaches by adding the affinity constraint to the objective function to improve the recognition rate. Several experiments has been done on well-known face datasets such as ORL and YALE. The first experiment has been done on ORL dataset for face recognition and the second one has been done on YALE dataset for face expression detection. Both experiments have been compared with the basic approaches for evaluating the proposed method. The simulation results show that the proposed method can significantly outperform previous methods in face classification. In addition, the proposed method is applied to KTH action dataset and the results show that the proposed Sparse Coding approach could be applied for action recognition applications too.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 339

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    5
  • شماره: 

    2
  • صفحات: 

    91-109
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    19
  • دانلود: 

    0
چکیده: 

Due to the development of social networks and the Internet of things, we recently have faced with large datasets. High-dimensional data is mixed with redundant and irrelevant features, so the performance of machine learning methods is reduced. Feature selection is a common way to tackle this issue with aiming of choosing a small subset of relevant and non-redundant features. Most of the existing feature selection works are for supervised applications, which assume that the information of class labels is available. While in many real-world applications, it is not possible to provide complete knowledge of class labels. To overcome this shortcoming, an unsupervised feature selection method is proposed in this paper. The proposed method uses the matrix factorization-based regularized self-representation model to weight features based on their importance. Here, we initialize the weights of features based on the correlation among features. Several experiments are performed to evaluate the effectiveness of the proposed method. Then the results are compared with several baselines and state-of-the-art methods, which show the superiority of the proposed method in most cases.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 19

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button